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Abstract. We give a generalization of bi-Hamiltonian manifolds, extending the notion of
compatible Poisson tensors to Jacobi structures. We present some necessary and sufficient
conditions for two Jacobi structures defined on the same smooth manifold to be compatible.
We establish the relationship between the compatibility and the conformal equivalence of two
Jacobi manifolds. We study the reduction of compatible Jacobi manifolds.

Introduction

The idea of endowing a differentiable manifoldM with two ‘compatible’ structures is due
to Magri [8], when he considered two Poisson tensors,31 and32, on M, verifying the
condition [31,32] = 0. A manifold equipped with two compatible Poisson tensors is a bi-
Hamiltonian manifold or a Poisson–Nijenhuis manifold [9]. The bi-Hamiltonian structures
on manifolds play an important role in the study of integrable systems, see for example
[1, 14, 15].

The notion of Jacobi manifold was introduced by Lichnerowicz [7] in 1978, and it
includes the concepts of symplectic, Poisson, contact and co-symplectic manifolds. The
Jacobi manifolds are then a very rich geometrical tool‡.

A Jacobi manifoldis a triple (M,C,E) whereM is a differentiable manifold,C is a
2-times contravariant skew-symmetric tensor field onM andE is a vector field onM, such
that [E,C] = 0 and [C,C] = 2E ∧C, where [, ] is the Schouten–Nijenhuisbracket. When
E = 0, the Jacobi manifold is a Poisson manifold.

If (M,C,E) is a Jacobi manifold, theJacobi bracketof f, g ∈ C∞(M,R), is given by
{f, g} = C(df, dg)+ f (E.g)− g(E.f ). The Jacobi bracket defines a structure oflocal Lie
algebra [4, 6] onC∞(M,R).

In this paper we extend the notion of compatible Poisson tensors to the case of two
Jacobi structures defined on a differentiable manifold. Some properties of compatible Jacobi
structures are studied.

The reduction of Jacobi manifolds was established, from a geometric point of view,
in [11] and [12]. Using the Jacobi reduction, we deduce a reduction theorem for compatible
Jacobi manifolds.

The paper is divided into three sections. In section 1, we introduce the concept of
compatibility of two Jacobi structures defined on the same differentiable manifold, and we
give the necessary and sufficient conditions for two Jacobi manifolds to be compatible.

† E-mail: jmcosta@mat.uc.pt
‡ In a recent paper, de León et al [2] studied the Lichnerowicz–Jacobi cohomology of Jacobi manifolds.
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We establish the relationship between the compatibility of two Jacobi manifolds and the
compatibility of the corresponding associated homogeneous Poisson manifolds. In section 2,
we prove some results involving the compatibility and the conformal equivalence of two
Jacobi manifolds. In section 3, we study the reduction of compatible Jacobi manifolds.
Finally, in a note added in proof, we compare the algebraic perspective of the Jacobi
reduction that appears in a recent paper of Ibortet al [5], which envolves a Lie subalgebra
and an ideal ofC∞(M,R), with the geometric procedure, that is based on the Marsden–
Ratiu Poisson reduction [10]. We show that the geometric procedure can be obtained from
the algebraic one, by a suitable choice of a Lie subalgebra and an ideal ofC∞(M,R).
We prove that both Jacobi reductions can be applied in the case of two compatible Jacobi
structures, generating compatible reduced Jacobi manifolds.

All manifolds, maps, vector and tensor fields are assumed to be differentiable of class
C∞ and we use the conventions of [7] in the definition of the Schouten–Nijenhuis bracket.

1. Compatible Jacobi manifolds

Let M be a differentiable manifold equipped with two Jacobi structures,(C1, E1) and
(C2, E2).

Definition 1.1.Two Jacobi structures(C1, E1) and(C2, E2) onM are said to becompatible
if (C1+C2, E1+E2) is again a Jacobi structure onM. Under these conditions, the Jacobi
manifolds(M,C1, E1) and(M,C2, E2) are said to becompatible.

Remark 1.2.Let us denote by{, }i the Jacobi bracket onM corresponding to(Ci, Ei),
i = 1, 2. From definition 1.1, we may conclude that{, } = {, }1 + {, }2 is a Jacobi bracket
onM if {, }1 and{, }2 are compatible.

The following theorem states the necessary and sufficient conditions for two Jacobi
structures, defined on the same differentiable manifold, to be compatible.

Theorem 1.3.The Jacobi manifolds(M,C1, E1) and(M,C2, E2) are compatible if and only
if

(i) [C1, C2] = E1 ∧ C2+ E2 ∧ C1

(ii) [E1, C2] + [E2, C1] = 0.

Proof. Suppose that conditions (i) and (ii) hold. Then

[E1+ E2, C1+ C2] = [E1, C1] + [E1, C2] + [E2, C1] + [E2, C2] = 0

[C1+ C2, C1+ C2] = [C1, C1] + 2[C1, C2] + [C2, C2]

= 2(E1+ E2) ∧ (C1+ C2)

and(M,C1+ C2, E1+ E2) is a Jacobi manifold.
Now, suppose that(C1+ C2, E1+ E2) is a Jacobi structure onM. Since

[E1+ E2, C1+ C2] = [E1, C2] + [E2, C1]

condition (ii) holds.
We have

[C1+ C2, C1+ C2] = 2E1 ∧ C1+ 2[C1, C2] + 2E2 ∧ C2. (1)

On the other hand

[C1+ C2, C1+ C2] = 2(E1+ E2) ∧ (C1+ C2). (2)

From equations (1) and (2) we obtain condition (i). �
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Corollary 1.4. If (C1, E1) and(C2, E2) are compatible Jacobi structures onM, then for any
λ ∈ R

(C1+ λC2, E1+ λE2) = (Cλ,Eλ)
is a Jacobi structure onM, which is compatible with(Ci, Ei), i = 1, 2.

Proof. Using theorem 1.3, a simple calculation gives

[Eλ,Cλ] = 0 [Cλ,Cλ] = 2Eλ ∧ Cλ (3)

and

[Cλ,Ci ] = Eλ ∧ Ci + Ei ∧ Cλ [Eλ,Ci ] + [Ei, Cλ] = 0 i = 1, 2. (4)

By equation (3),(Cλ,Eλ) is a Jacobi structure onM while (4) ensures the compatibility
of (Cλ,Eλ) with (Ci, Ei), i = 1, 2. �

What follows is a simple example of compatible Jacobi manifolds.

Example 1.5.LetM be a differentiable manifold of dimension 2n+1 and let(x0, x1, . . . , xn)

be local coordinates onM. The two Jacobi structures(E1, C1) and(E2, C2) onM, where

E1 = ∂

∂x0
and C1 = ∂

∂x0
∧
( n∑
i=1

x2i−1
∂

∂x2i−1

)
−

n∑
i=1

∂

∂x2i−1
∧ ∂

∂x2i

E2 = − ∂

∂x2
and C2 = x1C1

are compatible.

Recall that if (M,C,E) is a Jacobi manifold, we may associate with each function
f ∈ C∞(M,R) a vector field onM, Xf = [C, f ] + fE, which is called theHamiltonian
vector field of f . For all f, g ∈ C∞(M,R), we have [Xf ,Xg] = X{f,g} and {f, g} =
Xf .g − g(E.f ).

As in the case of bi-Hamiltonian manifolds, the compatibility of two Jacobi structures
defined on the same differentiable manifold can be stated using some properties that are
equivalent to definition 1.1.

Theorem 1.6.Let (M,C1, E1) and (M,C2, E2) be two Jacobi manifolds, whose Jacobi
brackets are denoted respectively by{, }1 and {, }2. Given a functionf ∈ C∞(M,R), we
denote byXf andYf the Hamiltonian vector fields off with respect to the Jacobi structures
(C1, E1) and(C2, E2), respectively.

The following properties 1–4 are equivalent:

1. (C1, E1) and(C2, E2) are compatible;
2. for all f, g, h ∈ C∞(M,R)

Scirc({f, {g, h}1}2+ {f, {g, h}2}1) = 0

whereScirc means summmation after circular permutation;
3. for all f, g ∈ C∞(M,R)

[Xf , Yg] + [Yf ,Xg] −X{f,g}2 − Y{f,g}1 = 0;
4. for all f ∈ C∞(M,R)

(a)L(Yf )C1+ L(Xf )C2+ (E2.f )C1+ (E1.f )C2 = 0
(b) [Xf ,E2] + [Yf ,E1] +X(E2.f ) + Y(E1.f ) = 0.
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Proof. Let us suppose that condition 1 holds. Then,(C,E) = (C1 + C2, E1 + E2) is
a Jacobi structure onM and, as observed in remark 1.2, its Jacobi bracket is given by
{, } = {, }1+ {, }2. For all f, g, h ∈ C∞(M,R)
Scirc({f, {g, h}}) = Scirc({f, {g, h}1}1+ {f, {g, h}1}2+ {f, {g, h}2}1+ {f, {g, h}2}2)
and the Jacobi identity for{, }, {, }1 and{, }2 gives condition 2.

Let us now suppose that condition 2 holds. For anyf, g, h ∈ C∞(M,R), we have

([E1, C2] + [E2, C1])(df, dg) = E1.(C2(df, dg))− C2(df, d(E1.g))+ C2(dg, d(E1.f ))

+E2.(C1(df, dg))− C1(df, d(E2.g))+ C1(dg, d(E2.f ))

= E1.{f, g}2+ E2.{f, g}1− Yf .(E1.g)

+Yg.(E1.f )−Xf .(E2.g)+Xg.(E2.f ) = 0 (5)

the last equality being obtained from condition 2 withh = 1; also

([C1, C2] − E1 ∧ C2− E2 ∧ C1)(df, dg, dh)

= Scirc(C2(df, d(C1(dg, dh)))+ C1(df, d(C2(dg, dh)))− (E1.f )C2(dg, dh)

− (E2.f )C1(dg, dh))

= Scirc({f, {g, h}1}2+ {f, {g, h}2}1− f (([E1, C2] + [E2, C1])(dg, dh))) = 0.

(6)

Applying theorem 1.3, equations (5) and (6) ensure the compatibility of(C1, E1) and
(C2, E2).

Now, we show the equivalence of conditions 2 and 3. Let us take anyh ∈ C∞(M,R).
Then

([Xf , Yg] + [Yf ,Xg] −X{f,g}2 − Y{f,g}1).h
= Xf .({g, h}2+ (E2.g)h)− Yg.({f, h}1+ (E1.f )h)+ Yf .({g, h}1+ (E1.g)h)

−Xg.({f, h}2+ (E2.f )h)− {{f, g}2, h}1− (E1.{f, g}2)h− {{f, g}1, h}2
− (E2.{f, g}1)h
= Scirc({f, {g, h}2}1+ {f, {g, h}1}2)+ h(Xf .(E2.g)− Yg.(E1.f )

+Yf .(E1.g)−Xg.(E2.f )− E1.{f, g}2− E2.{f, g}1). (7)

If condition 2 holds, the two first terms of (7) vanish and, as we have remarked above
(in equation (5)), the last term of (7) also vanishes. Then, becauseh ∈ C∞(M,R) is an
arbitrary function, we obtain condition 3.

If condition 3 holds, then equation (7) gives

0= Scirc({f, {g, h}2}1+ {f, {g, h}1}2)+ h(Xf .(E2.g)− Yg.(E1.f )

+Yf .(E1.g)−Xg.(E2.f )− E1.{f, g}2− E2.{f, g}1)
= Scirc({f, {g, h}2}1+ {f, {g, h}1}2)
+h([E1, Yf ] + [E2, Xf ] −XE2.f − YE1.f ).g. (8)
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However, from condition 3, we can easily show that the last term of the right-hand side
of (8) vanishes. Thus, equation (8) gives condition 2.

Finally, let us now show the equivalence of conditions 3 and 4. Take anyg ∈
C∞(M,R). Then

[L(Yf )C1+ L(Xf )C2+ (E2.f )C1+ (E1.f )C2, g]

= [Yf ,Xg] − [Yf , gE1] + [Xf , Yg] − [Xf , gE2] − [C1, {f, g}2]

− [C1, (E2.f )g] − [C2, {f, g}1] − [C2, (E1.f )g] + [(E2.f )C1, g]

+ [(E1.f )C2, g]

= [Yf ,Xg] + [Xf , Yg] −X{f,g}2 − Y{f,g}1 − g(XE2.f + YE1.f

+ [Yf ,E1] + [Xf ,E2])

and, if condition 4 holds, we obtain condition 3.
Now, if condition 3 holds, takingg = 1, we imediately obtain condition 4(b). To prove

that 3⇒ 4(a), we take two arbitrary functionsg, h ∈ C∞(M,R) and we show that

(L(Yf )C1+ L(Xf )C2+ (E2.f )C1+ (E1.f )C2)(dg, dh) = 0.

Using condition 2, which is equivalent to condition 3 as we have already proved, we obtain

(L(Yf )C1+ L(Xf )C2+ (E2.f )C1+ (E1.f )C2)(dg, dh)

= Yf .(C1(dg, dh))− C1(dg, d(Yf .h))+ C1(dh, d(Yf .g))+Xf .(C2(dg, dh))

−C2(dg, d(Xf .h))+ C2(dh, d(Xf .g))+ (E2.f )C1(dg, dh)

+ (E1.f )C2(dg, dh)

= g{E2.f, h}1+ g{E1.f, h}2− h{E2.f, g}1− h{E1.f, g}2+ {(E2.f )h, g}1
−{(E2.f )g, h}1+ 2(E1.f ){g, h}2+ {(E1.f )h, g}2− {(E1.f )g, h}2
+ 2(E2.f ){g, h}1− (E2.f )g(E1.h)+ (E2.f )h(E1.g)− (E1.f )g(E2.h)

+ (E1.f )h(E2.g) = 0.

�
Let (M,C1, E1) and(M,C2, E2) be two Jacobi manifolds. Let us take the corresponding

associated homogeneous Poisson manifolds [7](P,31) and(P,32), with P = R×M and

3i = e−t
(
Ci + ∂

∂t
∧ Ei

)
i = 1, 2.

Proposition 1.7.The Jacobi manifolds(M,C1, E1) and (M,C2, E2) are compatible if and
only if the Poisson tensors31 and32 on P are compatible.

Proof. Using the properties of the Schouten–Nijenhuis bracket, with3i = e−t
(
Ci+ ∂

∂t
∧Ei

)
,

i = 1, 2, we obtain

[31,32] = e−2t (−E1 ∧ C2− E2 ∧ C1+ [C1, C2] − ∂

∂t
∧ ([E1, C2] + [E2, C1])).

So, [31,32] = 0 is equivalent to

−E1 ∧ C2− E2 ∧ C1+ [C1, C2] = 0 and [E1, C2] + [E2, C1] = 0.

Applying theorem 1.3, we obtain the desired result. �
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2. Compatibility and conformal equivalence of two Jacobi structures

Let us recall that if(M,C,E) is a Jacobi manifold, with the Jacobi bracket denoted by{, }
and a ∈ C∞(M,R) is a differentiable function that never vanishes onM, we may define
a new Jacobi bracket, setting{f, g}a = (1/a){af, ag}, for any f, g ∈ C∞(M,R). The
Jacobi structure onM associated with the new Jacobi bracket is the pair(Ca, Ea) , where
Ca = aC andEa = [C, a]+aE = Xa. The two Jacobi structures(C,E) and(Ca, Ea) onM,
are said to beconformally equivalent. Moreover, the property of conformality determines
an equivalence relation among Jacobi structures on the same differentiable manifold. If
(M,C,E) is a Jacobi manifold, the equivalence class of all Jacobi structures onM that are
conformally equivalent to(C,E), is called theconformal Jacobi structureof M.

We now show the relationship between the compatibility of Jacobi manifolds and the
conformal equivalence of their Jacobi structures.

Proposition 2.1.Let (M,C,E) be a Jacobi manifold and leth, k ∈ C∞(M,R) be two
distinct functions that never vanish onM. If (Ch,Eh) and(Ck, Ek) are two Jacobi structures
onM, that are conformally equivalent to(C,E), then(Ch,Eh) and(Ck, Ek) are compatible,
whereCh = hC, Ck = kC, Eh = hE + [C, h] andEk = kE + [C, k].

In particular, any Jacobi structure onM which is conformally equivalent to(C,E), is
compatible with(C,E).

Proof. We have

[Ch,Ck] − Eh ∧ Ck − Ek ∧ Ch = h[k, C] ∧ C + k[C, h] ∧ C + kh[C,C]

− 2khE ∧ C − k[C, h] ∧ C − h[C, k] ∧ C = 0

and also

[Eh,Ck] + [Ek,Ch] = [hE, k] ∧ C + k[hE,C] + [[C, h], k] ∧ C + k[[C, h], C]

+ [kE, h] ∧ C + h[kE,C] + [[C, k], h] ∧ C + h[[C, k], C]

= h(E.k) ∧ C + k[C, h] ∧ E − k[h,E] ∧ C + kE ∧ [h,C]

+ k(E.h)C + h[C, k] ∧ E − h[k,E] ∧ C + hE ∧ [k, C] = 0.

By theorem 1.3 the proof is completed. �

Proposition 2.2.Let (M,C1, E1) and (M,C2, E2) be two compatible Jacobi manifolds.
Then, for any functionh ∈ C∞(M,R) that never vanishes onM, the Jacobi manifolds
(M,C1h, E1h) and (M,C2h, E2h), with Cih = hCi andEih = hEi + [Ci, h], i = 1, 2, are
compatible.

Proof. We have

[C1h, C2h] − C1h ∧ E2h − C2h ∧ E1h = [hC1, h] ∧ C2+ h[hC1, C2] − h2C1 ∧ E2

−hC1 ∧ [C2, h] − h2C2 ∧ E1− hC2 ∧ [C1, h]

= h2([C1, C2] − C1 ∧ E2− C2 ∧ E1)

and, since(C1, E1) and(C2, E2) are compatible Jacobi structures, we obtain

[C1h, C2h] − C1h ∧ E2h − C2h ∧ E1h = 0. (9)
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On the other hand

[E2h, C1h] + [E1h, C2h] = h(E2.h)C1+ [hE2, h]C1+ h[hE2, C1] + [[C2, h], h] ∧ C1

+h[[C2, h], C1] + [hE1, h]C2+ h[hE1, C2]

+ [[C1, h], h] ∧ C2+ h[[C1, h], C2]

= h(E2.h)C1+ h[C1, h] ∧ E2+ [[C2, h], h] ∧ C1− h[[C1, C2], h]

+h(E1.h)C2+ h[C2, h] ∧ E1+ [[C1, h], h] ∧ C2

and, because [C1, C2] = E2 ∧ C1+ E1 ∧ C2, a straightfoward calculation leads to

[E2h, C1h] + [E1h, C2h] = 0. (10)

From equations (9) and (10), we obtain the desired result. �

3. Reduction of compatible Jacobi manifolds

The reduction theorem of Jacobi manifolds that appears in [11] and [12] is inspired on the
Marsden–Ratiu Poisson reduction theorem [10]. It states the following.

Theorem 3.1.Let (M,C,E) be a Jacobi manifold,S a submanifold ofM andD a vector
sub-bundle ofTSM, which satisfy the following conditions:

(i) the distributionT S∩D on S is completely integrable; the setS of leaves of the foliation
defined onS by that distribution is a differentiable manifold, and the canonical projection
π : S → S is a submersion;
(ii) for any F,G ∈ C∞(M,R) with differentialsdF anddG, restricted toS, vanishing on
D, the differentiald{F,G} restricted toS vanishes onD;
(iii) if D0 ⊂ T ∗S M denotes the annihilator ofD, thenC#(D0) ⊂ T S+D, and the restriction
of E to S is a differentiable section ofT S +D.

Then there exists onS a unique compatible Jacobi structure,(C,E) such that, for any
f, g ∈ C∞(S,R) and any differentiable extensionsF of f ◦ π andG of g ◦ π whose
differentialsdF anddG, restricted toS, vanish onD:

{f, g} ◦ π = {F,G} ◦ i (11)

wherei is the canonical injection ofS in M.

The last theorem can readily be extended to the case of a differentiable manifold
equipped with two compatible Jacobi structures.

Theorem 3.2.Let M be a differentiable manifold equipped with two compatible Jacobi
structures(C1, E1) and (C2, E2), S a submanifold ofM andD a vector sub-bundle of
TSM satisfying condition (i) of theorem 3.1. Let us suppose that conditions (ii) and (iii) of
theorem 3.1 are verified for both Jacobi structures(C1, E1) and(C2, E2) onM. Then, there
exists onS two unique compatible Jacobi structures,(C1, E1) and (C2, E2) with Jacobi
brackets given by

{f, g}j ◦ π = {F,G}j ◦ i j = 1, 2

wheref, g ∈ C∞(S,R) andF,G ∈ C∞(M,R) are differentiable extensions off ◦ π and
of g ◦ π , respectively, with differentialsdF anddG, restricted toS, vanishing onD.
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Proof. The existence and uniqueness of the reduced Jacobi structures onS are ensured by
theorem 3.1. It only remains to show that these Jacobi structures onS are compatible.

Take anyf, g, h ∈ C∞(S,R) and letG andH be differentiable extensions ofg ◦π and
of h ◦ π , respectively, whose differentialsdG anddH , restricted toS vanish onD.

Then

{g, h}1 ◦ π = {G,H }1 ◦ i
which means that{G,H } ∈ C∞(M,R) is an extension of{g, h}1 ◦ π ∈ C∞(S,R) and by
condition (i) the restriction ofd{G,H } to S vanishes onD. Thus

{f, {g, h}1}2 ◦ π = {F, {G,H }1}2 ◦ i
whereF is a differentiable extension off ◦π such that the restriction ofdF to S vanishes
onD.

A similar computation leads to

{f, {g, h}2}1 ◦ π = {F, {G,H }2}1 ◦ i.
Therefore

Scirc({f, {g, h}1}2 ◦ π + {f, {g, h}2}1 ◦ π) = Scirc({F, {G,H }1}2 ◦ i + {F, {G,H }2}1 ◦ i)
(12)

and, since(C1, E1) and(C2, E2) are compatible Jacobi structures onM, the right member
of (12) vanishes. Then

Scirc({f, {g, h}1}2+ {f, {g, h}2}1) = 0

and the Jacobi structures(C1, E1) and(C2, E2) on S are compatible. �
We remark that last theorem is a natural extension of the reduction theorem for bi-

Hamiltonian manifolds [13].
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Note added in proof. In a recent paper, Ibortet al [5] studied the reduction of the algebra of functions defined on
a Jacobi manifold, the so-calledJacobi algebra. In that work, given a Jacobi manifold(M,C,E), the main idea
is to choose a subalgebraA of (C∞(M,R), .) which is also a Lie subalgebra of(C∞(M,R), {, }), and an ideal
I of (C∞(M,R), .) such thatA ∩ I is an ideal with respect to the associative structure and is also an invariant
Lie subalgebra. Then, the quotient spaceA/A ∩ I is a subalgebra ofC∞(M,R)/I and carries a (reduced) Lie
algebra structure. The authors show that, if the idealI is E-invariant (i.e.L(E)I ⊂ I), its normalizerNI fullfils
all the conditions imposed onA and so the quotient spaceNI/NI ∩ I inherits a Jacobi algebra structure induced
from that ofC∞(M,R). Moreover, if there exists a differentiable manifoldN such thatC∞(N,R) = NI/NI ∩I,
thenN inherits the structure of a Jacobi manifold and the bracket among the functions is given by the bracket of
the Lie algebra structure induced inNI/NI ∩ I.

Using the techniques of [3], we can show that theorem 3.1 can be obtained from the reduction procedure of
A Ibort, M de Léon and G Marmo’s paper. Moreover, several particular cases in that paper, also appear in [12].

Let (M,C,E) be a Jacobi manifold,S a submanifold ofM andD a vector sub-bundle ofTSM such that
conditions (i), (ii) and (iii) of theorem 3.1 hold. We take

A = {f ∈ C∞(M,R) : df ∈ D0}.
Then, it is obvious thatA is a subalgebra of(C∞(M,R), .) and, by condition(ii), A is also a Lie subalgebra of
(C∞(M,R), {, }).
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We choose the following ideal for(C∞(M,R), .):

I = {f ∈ C∞(M,R) : f |S= 0}.
Then, by condition(i), the quotient spaceA/A ∩ I can be identified withC∞(S,R).

Now, we have to prove thatA ∩ I is an invariant Lie subalgebra ofA; that is, we have to show that
{A ∩ I,A} ⊂ A ∩ I. Let f ∈ A andg ∈ A ∩ I. SinceA is a Lie subalgebra of(C∞(M,R), {, }), {f, g} ∈ A.
For all x ∈ S, g(x) = 0 and so

{f, g}(x) = (Xf .g)(x). (13)

However, ifg ∈ A ∩ I, thendg(x) ∈ (Dx + TxS)0, for all x ∈ S. So, by (13), the bracket{f, g}(x) vanishes on
S if Xf (x) ∈ Dx + TxS, for all x ∈ S, which is just condition (iii) of theorem 3.1.

Finally, we remark that, for eachf ∈ A, the operatorDf given by

Df (g) = {f, g} g ∈ A
is a differential operator of order one and thatA ∩ I is invariant for eachDf , f ∈ A. Thus,Df induces a
differential operator of order one in the quotient Lie algebraA/A∩ I, and we obtain a Jacobi algebra structure in
A/A ∩ I. Note that the Jacobi bracket inS, given by (11) is just the Lie bracket onA/A ∩ I.

We may now apply this result to the case of compatible Jacobi manifolds.
Let us take a differentiable manifoldM equipped with two compatible Jacobi structures(C1, E1) and

(C2, E2), S a submanifold ofM andD a vector sub-bundle ofTSM verifying the conditions of theorem 3.2.
The subalgebraA = {f ∈ C∞(M,R) : df ∈ D0} has now two Lie algebra structures,(A, {, }1) and
(A, {, }2). The previous discussion allow us to conclude that the quotient spaceA/A ∩ I = C∞(S,R), where
I = {f ∈ C∞(M,R) : f |S= 0}, inherits two (reduced) Jacobi structures. Using the same technical arguments of
the proof of theorem 3.2, we may show that the two Jacobi structures onC∞(S,R) = A/A ∩ I are compatible.
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