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Abstract. We give a generalization of bi-Hamiltonian manifolds, extending the notion of
compatible Poisson tensors to Jacobi structures. We present some necessary and sufficient
conditions for two Jacobi structures defined on the same smooth manifold to be compatible.
We establish the relationship between the compatibility and the conformal equivalence of two
Jacobi manifolds. We study the reduction of compatible Jacobi manifolds.

Introduction

The idea of endowing a differentiable manifald with two ‘compatible’ structures is due

to Magri [8], when he considered two Poisson tensdrg,and A,, on M, verifying the
condition [A1, A2] = 0. A manifold equipped with two compatible Poisson tensors is a bi-
Hamiltonian manifold or a Poisson—Nijenhuis manifold [9]. The bi-Hamiltonian structures
on manifolds play an important role in the study of integrable systems, see for example
[1, 14, 15].

The notion of Jacobi manifold was introduced by Lichnerowicz [7] in 1978, and it
includes the concepts of symplectic, Poisson, contact and co-symplectic manifolds. The
Jacobi manifolds are then a very rich geometrical tool

A Jacobi manifoldis a triple (M, C, E) where M is a differentiable manifold(C is a
2-times contravariant skew-symmetric tensor fieldMrand E is a vector field onM, such
that [E,C] =0 and [C, C] = 2E A C, where [ ] is the Schouten—Nijenhuibracket. When
E = 0, the Jacobi manifold is a Poisson manifold.

If (M, C, E) is a Jacobi manifold, th@acobi bracketof f, ¢ € C*°(M, R), is given by
{f.g}=Cdf,dg)+ f(E.g) — g(E.f). The Jacobi bracket defines a structurdoafal Lie
algebra[4, 6] on C*(M, R).

In this paper we extend the notion of compatible Poisson tensors to the case of two
Jacobi structures defined on a differentiable manifold. Some properties of compatible Jacobi
structures are studied.

The reduction of Jacobi manifolds was established, from a geometric point of view,
in [11] and [12]. Using the Jacobi reduction, we deduce a reduction theorem for compatible
Jacobi manifolds.

The paper is divided into three sections. In section 1, we introduce the concept of
compatibility of two Jacobi structures defined on the same differentiable manifold, and we
give the necessary and sufficient conditions for two Jacobi manifolds to be compatible.

1 E-mail: jmcosta@mat.uc.pt
i In arecent paper, de be et al [2] studied the Lichnerowicz—Jacobi cohomology of Jacobi manifolds.
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We establish the relationship between the compatibility of two Jacobi manifolds and the
compatibility of the corresponding associated homogeneous Poisson manifolds. In section 2,
we prove some results involving the compatibility and the conformal equivalence of two
Jacobi manifolds. In section 3, we study the reduction of compatible Jacobi manifolds.
Finally, in a note added in proof, we compare the algebraic perspective of the Jacobi
reduction that appears in a recent paper of llevrl [5], which envolves a Lie subalgebra
and an ideal ofC*(M, R), with the geometric procedure, that is based on the Marsden—
Ratiu Poisson reduction [10]. We show that the geometric procedure can be obtained from
the algebraic one, by a suitable choice of a Lie subalgebra and an ide# ¥, R).
We prove that both Jacobi reductions can be applied in the case of two compatible Jacobi
structures, generating compatible reduced Jacobi manifolds.

All manifolds, maps, vector and tensor fields are assumed to be differentiable of class
C*> and we use the conventions of [7] in the definition of the Schouten—Nijenhuis bracket.

1. Compatible Jacobi manifolds

Let M be a differentiable manifold equipped with two Jacobi structuKes, E£;) and
(Ca, E).

Definition 1.1.Two Jacobi structure€Cy, E1) and(C,, E2) on M are said to beompatible
if (C1+ C2, E1+ E>) is again a Jacobi structure ad. Under these conditions, the Jacobi
manifolds (M, C1, E1) and (M, C,, E>) are said to beompatible

Remark 1.2Let us denote by, }; the Jacobi bracket oM corresponding taC;, E;),
i = 1,2. From definition 1.1, we may conclude that = {, }1 + {, }2 is a Jacobi bracket
on M if {,}; and{, }, are compatible.

The following theorem states the necessary and sufficient conditions for two Jacobi
structures, defined on the same differentiable manifold, to be compatible.

1heorem 1.3The Jacobi manifoldéM, C,1, E1) and(M, C,, E,) are compatible if and only
[
0] [C1,Col=E1NCo+ ExACy
(i) [E1, Co] +[Ez C1] =0.
Proof. Suppose that conditions (i) and (ii) hold. Then

[E1+ E2, C1+ Co] = [E1, C1] + [E1, Co] + [E2, C1] +[E2, C2] =0

[C1+4 C2, C1+ C2] =[Cy1, C1] + 2[C1, C2] 4 [C2, C2]

=2(E1+ E) A (C1+ ()

and (M, C1 + C,, E1 + E>5) is a Jacobi manifold.
Now, suppose thatC; + C», E1 + E>) is a Jacobi structure oi. Since

[E1+ Ez, C1+ C2] = [E1, Co] + [E2, Ci]
condition (ii) holds.

We have
[C1+ Co, C1+ Co] =2E1 AC1+ 2[C1, Co] + 2E2 A Co. 1)
On the other hand
[C1+ C2, C1+ Co]l =2(E1 + E2) A (C1+ Cy). 2

From equations (1) and (2) we obtain condition (i). O



Compatible Jacobi manifolds: geometry and reduction 1027

Corollary 1.4.1f (Cy, E1) and(C2, E) are compatible Jacobi structures #&h then for any
reR

(C1+ AC2, E1+ AE2) = (G, Ey)
is a Jacobi structure oM, which is compatible withC;, E;), i = 1, 2.

Proof. Using theorem 1.3, a simple calculation gives

[Ex,. C]=0 [Cy, Ci] = 2E, A Gy, ()
and
[C.,Cl=E, AC; + E; ACy, [E,,Ci1+[E:,Ci]=0 i=12 (4)
By equation (3)(C,, E,) is a Jacobi structure oM while (4) ensures the compatibility
of (Cy, E;) with (C;, E)), i =1, 2. Il

What follows is a simple example of compatible Jacobi manifolds.

Example 1.51 et M be a differentiable manifold of dimension 21 and let(xg, x1, . .., x,)
be local coordinates oM. The two Jacobi structurgs:,, C1) and (E», C) on M, where

d a & a & a a
Ei=— and Ci=— A i — A
! 3)(0 ! 8)60 <; 2 13)62,'1) ; 3)62,',1 3)62,'

0
Er=—— and Cy, = x1C1
aX2

are compatible.

Recall that if (M, C, E) is a Jacobi manifold, we may associate with each function
f € C*®(M,R) a vector field onM, Xy = [C, f] + fE, which is called theHamiltonian
vector fieldof f. For all f,g € C*(M,R), we have Ky, X,] = X(re and{f, g} =
Xr.g — 8(E.f).

As in the case of bi-Hamiltonian manifolds, the compatibility of two Jacobi structures
defined on the same differentiable manifold can be stated using some properties that are
equivalent to definition 1.1.

Theorem 1.6Let (M, Cq, E1) and (M, C,, E») be two Jacobi manifolds, whose Jacobi
brackets are denoted respectively fpy; and{, },. Given a functionf € C*(M, R), we
denote byX, andY, the Hamiltonian vector fields of with respect to the Jacobi structures
(C1, E1) and (Co, E»), respectively.

The following properties 1-4 are equivalent:
1. (C1, E1) and(C», E») are compatible;
2. forall f,g,h e C*°(M,R)

Scirc({ /. {8, hYaya + {f. {g. h}2}) = O

where S¢i,c means summmation after circular permutation;
3. forall f,g € C*(M,R)

[Xr, Yl + Y7 Xol — X101, — Yifgn =0
4, for all f € C*(M,R)

(@) LYy)C1+ L(Xf)Co2 + (E2.f)C1+ (E1. f)C2 =0
(0) [Xy, E2] +[Yyr, Edl + X0y + Y1 1) = O
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Proof. Let us suppose that condition 1 holds. The@, E) = (C1 + Co, E1 + E») iS
a Jacobi structure o and, as observed in remark 1.2, its Jacobi bracket is given by
{}=0l+{ )2 Forallf,g,h € C*(M,R)

Scirc({f, {8, h}}) = Scirc({f; (g, AYa}s + {f, (g, h})a + {f. (g, hl2}a + (. {g. h}2}2)

and the Jacobi identity fof, }, {, }1 and{, }» gives condition 2.
Let us now suppose that condition 2 holds. For ghy, h € C*°(M,R), we have

([E1, Co] + [E2, CiD)(df. dg) = E1.(Ca(df, dg)) — C2(df, d(E1.8)) + Ca(dg, d(E. f))
+ E2.(Ca(df, dg)) — C1(df, d(E2.8)) + C1(dg, d(E2. f))
= E1{f, glo+ E2.{f, gl — Yr.(E1.8)
+ Y. (E1.f) — X5.(E2.8) + Xg.(E2.f) =0 (5)
the last equality being obtained from condition 2 with= 1; also
([C1, C2] — E1 A Ca — E2 A Cy)(df, dg, dh)
= Seire(C2(df, d(C1(dg, dh))) + C1(df, d(C2(dg, dh))) — (E1.[)C2(dg, dh)
— (E2.f)C1(dg, dh))
= Scic({ /. {g, hhal2 + {f. {g, h}2}h1 — f(([E1, Co] + [E2, C1])(dg, dh))) = 0.
(6)

Applying theorem 1.3, equations (5) and (6) ensure the compatibilitfCef £1) and
(Co, En).

Now, we show the equivalence of conditions 2 and 3. Let us takehany *°(M, R).
Then

(X5, Yol + 15, Xl = Xi.03, = Yiggn)-h
= Xr.({g, h}2 + (E2.9)h) — Yo.({f, h}1 + (E1. )Hh) + Yr.({g, h}1 + (E1.8)h)
= Xo-({fs hY2 + (E2. f)h) — {{ [, g}a, h}1 — (Ex{ [ g})h — {{f, g}, h}2
— (E2.{f. g}Dh
= Scirc({f, {8, h}2}1 + {f. {8, h}1}2) + h(X;.(E2.8) — Y, .(E1. f)

+Yp.(Erg) — Xo.(E2.f) — Ev{f. g}2 — E2.{f. g}o). Q)

If condition 2 holds, the two first terms of (7) vanish and, as we have remarked above
(in equation (5)), the last term of (7) also vanishes. Then, because& (M, R) is an
arbitrary function, we obtain condition 3.

If condition 3 holds, then equation (7) gives

0= Seirc({ f, {8, h}2}1 + {f. {8, h}1}2) + h(Xy.(E2.8) — Y,.(Ea.f)
+Yr.(E1r.g) — Xo.(E2.f) — Ex{[f, g}2 — E2.{f. g}
= Scirc({f, {8, h}2h + {f. {8, h}al2)

+h([Ex, Yr] +[E2, X¢] — Xpp 0 — YEL£)-8- (8)
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However, from condition 3, we can easily show that the last term of the right-hand side
of (8) vanishes. Thus, equation (8) gives condition 2.

Finally, let us now show the equivalence of conditions 3 and 4. Take gany
C*®(M,R). Then

[L(YF)C1+ L(Xf)Co+ (E2. f)C1+ (E1. f)C2, 8]
= [Y, Xl = [Yr, gEal + [ Xy, Yol — [ Xy, gE2] — [Ca, {[. g}2]
—[C1. (E2./)g]l — [C2. { f, ghl — [C2, (E1.f)g] + [(E2. /)C1, g]
+[(E1./)C2, ]
=[Yr, X, +[Xr, Yol — X501 — Yiroh — 8XEpr + YE, f

+[Yy, E1] + [ Xy, E2])

and, if condition 4 holds, we obtain condition 3.
Now, if condition 3 holds, taking = 1, we imediately obtain condition 4(b). To prove
that 3= 4(a), we take two arbitrary functiong 7 € C*°(M, R) and we show that

(LYP)C1+ L(Xp)Co+ (E2.f)C1+ (E1. f)C2)(dg, dh) = 0.
Using condition 2, which is equivalent to condition 3 as we have already proved, we obtain
(L(Y7)C1+ L(Xf)C2 + (E2. f)C1 + (E1. f)C2)(dg, dh)
= Yr.(C1(dg, dh)) — C1(dg, d(Yy.h)) + C1(dh, d(Yy.g)) + Xr.(Ca(dg, dh))
—Ca(dg, d(Xy.h)) + Ca(dh, d(Xy.g)) + (E2.f)C1(dg, dh)
+ (E1. f)Ca(dg, dh)
= g{Ez. f,h}1 + g{Ex. [, h}o — M{Ea. f, gha — M{E1. f, g}o + {(E2. /)R, gh
—{(E2./)8, ht1 + 2(E1. /){g, h}2 + {(E1. /)R, g} — {(E1./)g, hl2
+2(E2. f){g, ht1 — (E2.f)g(Evh) + (E2. f)h(E1.g) — (Ev.f)g(E2.h)
+ (E1.f)h(E2.8) = 0.
O
Let (M, Cy1, E1) and(M, C», E>) be two Jacobi manifolds. Let us take the corresponding
associated homogeneous Poisson manifold§#7]A1) and (P, A»), with P = R x M and
Aizet(Ci—i-a/\Ei) i=12
at

Proposition 1.7.The Jacobi manifold$M, C,, E;) and (M, C,, E,) are compatible if and
only if the Poisson tensora; and A, on P are compatible.

Proof. Using the properties of the Schouten—Nijenhuis bracket, witk= e~ (Cﬁ% /\Ei),

i =1,2, we obtain

d
[A1, As] =€ 2 (—E1 A Cy— Ex A C1+[C1, Co] — % A ([E1, Co] + [E2, C1])).

So, [A1, A2] =0 is equivalent to
—EiNC2— E2AC1+[C1,C) =0 and [E1, Co] + [E2, C1] = 0.
Applying theorem 1.3, we obtain the desired result. O



1030 J M Nunes da Costa
2. Compatibility and conformal equivalence of two Jacobi structures

Let us recall that ifiM, C, E) is a Jacobi manifold, with the Jacobi bracket denoted, by
anda € C*(M, R) is a differentiable function that never vanishes dn we may define
a new Jacobi bracket, settifd, g}, = (1/a){af, ag}, for any f, g € C*(M,R). The
Jacobi structure oM associated with the new Jacobi bracket is the pé@ir, E,) , where
C, =aC andE, = [C, a]+aE = X,. The two Jacobi structurés’, E) and(C,, E,) on M,
are said to beonformally equivalent Moreover, the property of conformality determines

an equivalence relation among Jacobi structures on the same differentiable manifold.

(M, C, E) is a Jacobi manifold, the equivalence class of all Jacobi structurd4 tvat are
conformally equivalent tqdC, E), is called theconformal Jacobi structuref M.

We now show the relationship between the compatibility of Jacobi manifolds and the

conformal equivalence of their Jacobi structures.

Proposition 2.1.Let (M, C, E) be a Jacobi manifold and lét, k € C*(M,R) be two
distinct functions that never vanish a#. If (C;,, E;) and(Cy, E;) are two Jacobi structures
on M, that are conformally equivalent t@, E), then(Cy,, E;) and(Cy, E;) are compatible,
whereCy, = hC, Cy = kC, E, = hE +[C,h] and E; = kE + [C, k].

In particular, any Jacobi structure ad which is conformally equivalent t6C, E), is
compatible with(C, E).

Proof. We have
[Ch, Ci] — En A Cx — Ex A Cy, = h[k, C] AC + k[C, h] A C + kh[C, C]
—2khE AC —k[C,h] AC —h[C,kK]AC =0
and also
[Ew, C] + [Ex, Ch]l = [RE, k) AC +k[hE,C] +[[C, h], k] A C +Kk[[C, h], C]
+[kE,h] A C 4+ h[kE, C]1+[[C, k], k] A C + h[[C, k], C]
=h(Ek)AC +k[C,h] AN E —k[h, E] A C +kE A[h, C]
+k(E.R)C + h[C,k] A E — h[k, E]| AC + hE A [k, C] = 0.
By theorem 1.3 the proof is completed. O

Proposition 2.2.Let (M, Cy1, E;) and (M, Ca, E;) be two compatible Jacobi manifolds.
Then, for any functiom € C*°(M,R) that never vanishes oM, the Jacobi manifolds
(M, Cy, E1p) and (M, Cy,, Eop), With Cy, = hC; and E;, = hE; + [Ci, ]’l], i=1,2 are
compatible.

Proof. We have
[C1n, Can] — Cui A Ezyy — Cap A Evyy = [RC1, B] A Ca + h[hC1, C2) — h2Cy A Es
—hCy A[Ca, h] — h%Co A E1 — hCy A [Cy, h]
= h?([C1, Ca] — C1 A E3 — Ca A Ey)
and, since(Cy, E;) and (C,, E») are compatible Jacobi structures, we obtain

[Cip, Co4] — C1y A Egp — Co A Ey; = 0. 9
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On the other hand
[E2n, Cun] 4 [En, Con] = h(E2.h)Cy1 + [hE2, h]Cy + h[hE>, C1] + [[C2, k], h] A C1

+ h[[Cz, h], CJ_] + [l’lE]_, h]Cz + h[hEl, Cz]
+[[C1, k], h] A C2 + R[[C1, K], C2]
= h(E2.h)C1+ h[C1, h] A E2 4+ [[C2, h], h] A C1 — h[[C1, C2], h]

+h(E1.h)Ca + h[C2, h] A E1 + [[C1, h], k] A C2
and, because];, C2] = E> A C1 + E3 A Ca, a straightfoward calculation leads to

[E2, Cu] + [Ewn, Cn] = 0. (10)
From equations (9) and (10), we obtain the desired result. O

3. Reduction of compatible Jacobi manifolds

The reduction theorem of Jacobi manifolds that appears in [11] and [12] is inspired on the
Marsden—Ratiu Poisson reduction theorem [10]. It states the following.

Theorem 3.1Let (M, C, E) be a Jacobi manifold§ a submanifold ofM and D a vector
sub-bundle off's M, which satisfy the following conditions:

(i) the distribution7 SN D on S is completely integrable; the s8tof leaves of the foliation
defined onS by that distribution is a differentiable manifold, and the canonical projection
w .S — S is a submersion;

(i) for any F, G € C*(M, R) with differentialsd F anddG, restricted toS, vanishing on

D, the differentiald{F, G} restricted toS vanishes omnD;

(iii) if D° c T¢M denotes the annihilator d, thenC*(D% c TS+ D, and the restriction

of E to S is a differentiable section of' S + D.

Then there exists oi¥ a unique compatible Jacobi structur&;, E) such that, for any
f,g € C>(S,R) and any differentiable extensions of f o 7 and G of g o # whose
differentialsd F anddG, restricted toS, vanish onD:

{f,glom ={F,G}oi (11)
wherei is the canonical injection af in M.

The last theorem can readily be extended to the case of a differentiable manifold
equipped with two compatible Jacobi structures.

Theorem 3.2Let M be a differentiable manifold equipped with two compatible Jacobi
structures(Cy, E1) and (C», E»), S a submanifold ofM and D a vector sub-bundle of
TsM satisfying condition (i) of theorem 3.1. Let us suppose that conditions (ii) and (iii) of
theorem 3.1 are verified for both Jacobi structui@€s E1) and(C», E>) on M. Then, there
exists onS two unique compatible Jacobi structurés;,, E1) and (C,, E») with Jacobi
brackets given by

{f.g}jom ={F,G}joi j=12

where f, g € C*(S,R) and F, G € C*(M,R) are differentiable extensions ¢gfo 7 and
of g o, respectively, with differentiald F anddG, restricted toS, vanishing onD.
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Proof. The existence and uniqueness of the reduced Jacobi structuearenensured by
theorem 3.1. It only remains to show that these Jacobi structurésasa compatible.
Take anyf, g, h € C®(S,R) and letG and H be differentiable extensions gfor and
of h o 7, respectively, whose differentialdG andd H, restricted taS vanish onD.
Then

{g,h}1omr ={G,H}101

which means thatG, H} € C*°(M, R) is an extension ofg, h}; o € C*°(S,R) and by
condition (i) the restriction ofl{G, H} to S vanishes onD. Thus

{fv {g,h}l}zoﬂ' = {Fv {Gs H}l}ZOi

where F is a differentiable extension of o 7 such that the restriction efF to S vanishes
on D.
A similar computation leads to

{(fi{g. h}2trom ={F,{G, H}2}101.
Therefore

Scic({f, {8, hlay2 o +{f. {8, h}2ta o) = Scic({F. {G, H}ha}o 0 i +{F,{G, H}2}1 010)
(12)

and, since(Cy, E;) and (C,, E,) are compatible Jacobi structures dh the right member
of (12) vanishes. Then

Scic({ f {8, hlalo +{f. {g. h}2}) =0
and the Jacobi structuré€'y, E1) and(C», E») on S are compatible. O

We remark that last theorem is a natural extension of the reduction theorem for bi-
Hamiltonian manifolds [13].
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Note added in proofin a recent paper, Ibost al [5] studied the reduction of the algebra of functions defined on
a Jacobi manifold, the so-calleldhcobi algebra In that work, given a Jacobi manifoldv, C, E), the main idea
is to choose a subalgebré of (C°°(M, R),.) which is also a Lie subalgebra o€ (M, R), {, }), and an ideal
7 of (C*®(M,R),.) such thatA N Z is an ideal with respect to the associative structure and is also an invariant
Lie subalgebra. Then, the quotient spa¢e4 N7 is a subalgebra o€ > (M, R)/Z and carries a (reduced) Lie
algebra structure. The authors show that, if the idea E-invariant (i.e.L(E)Z C Z), its normalizerN7 fullfils
all the conditions imposed ad and so the quotient spag¢é; /N7 N T inherits a Jacobi algebra structure induced
from that of C*° (M, R). Moreover, if there exists a differentiable manifaldsuch thatC>® (N, R) = N7 /N7 NZ,
then N inherits the structure of a Jacobi manifold and the bracket among the functions is given by the bracket of
the Lie algebra structure induced iz /N7 N Z.
Using the techniques of [3], we can show that theorem 3.1 can be obtained from the reduction procedure of
A lbort, M de Ledbn and G Marmo’s paper. Moreover, several particular cases in that paper, also appear in [12].
Let (M, C, E) be a Jacobi manifoldS a submanifold ofM and D a vector sub-bundle ofsM such that
conditions (i), (i) and (iii) of theorem 3.1 hold. We take

A={f € C®M,R):df € D%.

Then, it is obvious tha#d is a subalgebra ofC*°(M, R), .) and, by condition(ii), A is also a Lie subalgebra of
(C®M,R), {, .
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We choose the following ideal faiC>° (M, R), .):
I={feC®M,R): f|s=0}.

Then, by condition(i), the quotient spacel/.A N T can be identified witrlC> (S, R).

Now, we have to prove thatl N Z is an invariant Lie subalgebra ofl; that is, we have to show that
{(ANZ, A} c ANZ. Let f € Aandg € ANZ. SinceA is a Lie subalgebra ofC*(M,R), {,}), {f, g} € A.
Forallx € S, g(x) =0 and so

{f g}x) = (Xr.£)(x). 13)

However, ifg € ANZ, thendg(x) € (Dy + T $)°, for all x € S. So, by (13), the brackdtf, g}(x) vanishes on
S if Xr(x) € Dy + TS, for all x € S, which is just condition (jii) of theorem 3.1.
Finally, we remark that, for eacli € .4, the operatoD; given by

Dy(g) =1{f, &} geA

is a differential operator of order one and thatn 7 is invariant for eachDy, f € A. Thus, Dy induces a
differential operator of order one in the quotient Lie algeldrad N Z, and we obtain a Jacobi algebra structure in
A/ANT. Note that the Jacobi bracket y given by (11) is just the Lie bracket oA/ ANZ.

We may now apply this result to the case of compatible Jacobi manifolds.

Let us take a differentiable manifold/ equipped with two compatible Jacobi structurgs;, £;1) and
(Ca, E2), S a submanifold ofM and D a vector sub-bundle ofsM verifying the conditions of theorem 3.2.
The subalgebrad = {f € C®(M,R) : df e D° has now two Lie algebra structuregd, {,}1) and
(A, {,}2). The previous discussion allow us to conclude that the quotient sgagen Z = C>(S, R), where
I={feC®M,R): f|s= 0}, inherits two (reduced) Jacobi structures. Using the same technical arguments of
the proof of theorem 3.2, we may show that the two Jacobi structurexo(s, R) = .A/.A N T are compatible.
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